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Effect of grain boundary faceting on kinetics
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The Von-Neumann-Mullins relationship for two-dimensional grain growth is modified for
the case of grain boundary faceting. It is shown that the anisotropy of grain boundary
energy alone slows down the rate of normal grain growth. For highly mobile facets,
however, the acceleration of the growth process is possible, accompanied by development
of anisotropic microstructure. It is shown that the mean-field approach to the problem of
grain growth in highly anisotropic polycrystal results in parabolic growth law similar to that
for isotropic systems, with the facet mobility and maximal torque substituting the grain
boundary mobility and grain boundary energy in isotropic systems.
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1. Introduction
Improving the properties of polycrystal by increas-
ing the fraction of coincidence site lattice (CSL) grain
boundaries (GBs) is the quintessence of the concept
of Grain Boundary Engineering [1]. The conventional
wisdom says that the CSL GBs exhibit higher corrosion
resistance and fracture energy and lower diffusivity than
their random counterparts and, therefore, increasing the
fraction of CSL GBs improves mechanical properties
and corrosion resistance of polycrystal. This concept
gained momentum with the development of orientation
image microscopy (OIM) technique that allows to char-
acterize easily the misorientational degrees of freedom
(DOFs) of thousands of GBs and to determine the frac-
tion of different CSL GBs in polycrystal.

However, this approach suffers from one serious
drawback: while three misorientational DOFs deter-
mine completely the type of CSL GB, a considerable
variation of GB properties can be caused by remaining
two inclinational DOFs. The latter are difficult to de-
termine experimentally, and there are only few works
in which the GB properties are correlated with all five
geometric DOFs [2, 3]. The importance of the inclina-
tional DOFs can be demonstrated on example of the
�3 (here � is a reciprocal density of coincident lattice
sites) CSL GB in Cu: while the symmetric coherent
twin boundary exhibits particularly low energy and no
segregation of impurities, symmetrical incoherent twin
that can be obtained from the coherent one by 90 deg
rotation around 〈011〉 axis behaves similarly to the ran-
dom non-CSL GBs [4]. Strong inclinational anisotropy
of the GBs leads to the phenomenon of GB faceting.
There are numerous observations in the literature show-
ing that the CSL GBs are particularly prone to faceting
[5]. It is the GB faceting that is responsible for the char-
acteristic shape of �3 twins in Cu.

An essential element of any GB engineering pro-
cess is the grain growth after recrystallization. Indeed,
the computer simulations confirm that the fraction of
low energy, low mobility GBs considerably increases
in the course of grain growth [6]. The aim of the present
work is to investigate the effect of GB faceting on
grain growth and evolution of the population of the
anisotropic GBs in polycrystals.

In the recent computer simulation study based on the
phase field model [7] the dependencies of both GB en-
ergy and mobility on misorientation and inclination an-
gles were taken into account. It was shown that, in con-
trast with the expectations based on the common sense,
the anisotropy of GB mobility has little effect on pa-
rameters of grain growth process, while the anisotropy
of GB energy can lead to substantial deviations from
the parabolic growth behavior and random misorien-
tation distribution characteristic for isotropic systems.
However, the phase field model with a weak anisotropy
considered in [7] cannot account for the sharp edges and
flat facets of GBs observed in a number of experimen-
tal works. The observations of Yoon and co-workers
[8–10] indicate that such a faceting may play a crucial
role in normal grain growth and in nucleation of abnor-
mal grain growth that leads to survival of anisotropic
faceted GBs in the final microstructure. In the present
work we will base our analysis on the assumption of
strong inclinational anisotropy of the GB energy that
ultimately leads to faceting.

2. Von Neumann-Mullins relationship for
faceted GBs

Von Neumann-Mullins relationship for 2-D grain
growth represents a remarkable exact result that ex-
presses the rate of area change of an individual grain as
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Figure 1 Geometry of a facet (bold line) connected with non-singular
GBs at sharp edges.

a function of the number of grain sides [6]. It served as
a starting point for numerous computer simulations of
2-D grain growth [11]. In what follows we will consider
how the GB faceting modifies Von Neumann-Mullins
relationship.

Let us consider a faceted, flat GB that is joined with
two non-singular GBs of identical isotropic energy γb at
the sharp edges (Fig. 1). Such GB shape corresponds to
the sharp narrow cusp at facet inclination in otherwise
spherically symmetrical GB γ -plot. The relationship
between γb and the facet energy, γo, can be obtained
by considering a small shift of the sharp edge in the x-
direction, which should not change the total interfacial
energy of equilibrated system:

γ0 = γ b cos ϕ (1)

where ϕ is the angle at which the non-singular GB joins
the facet at the sharp edge. At the first glance, since the
flat facet does not exhibit any mathematical curvature,
the driving force for facet migration should be zero and
it should not contribute to the shrinking or growing of
grains. However, as was discussed by Herring [12] and
later by Taylor [13] the relevant quantity for microstruc-
ture evolution of faceted structures is not mathematical,
but weighted mean curvature. The latter is defined as the
negative of change of total interfacial energy due to the
small facet displacement, divided by the volume swept
by the facet. According to this definition, the weighted
mean curvature, WMC, (and, hence, the driving force
for facet migration) for the facet in Fig. 1 is

WMC1 = 2γb sin ϕ

l
(2)

where l is the facet length. Since the migration rate of
the facet is its mobility, M0, multiplied by the driving
force, WMC1, the contribution of the facet to the rate
of grain shrinking/growth (in geometry of Fig. 1) is:

(
dS

dt

)
f

= −2γ b M0 sin ϕ (3)

where S is the area of the grain bounded by the facet in
Fig. 1 and t is the annealing time. To proceed with our
model we need further simplifications. We will assume
that for all grains with the number of sides n < 6 all
facets are of the type shown in Fig. 1, i.e., they con-
tribute only to the grain shrinking. For the large grains
with n > 6 we will assume that the non-singular GBs
are concave, i.e., their centers of curvature lie outside
the grain. In this situation facet migration contributes
to the grain growth. At this point we will disregard the

Figure 2 A facet that does not contribute to grain growth.

possibility that the facet joins the non-singular GBs or
other facets at the triple junction. This should be a good
approximation for short facets and for ϕ � π/3. For
all situations we will discard the facets of the geometry
shown in Fig. 2, since their weighted mean curvature
is zero and they do not contribute to grain growth any-
way. We will also consider the situation of maximum
one facet for each grain side. The generalization for the
more realistic case of multiply faceting is straightfor-
ward, but in this paper we would like to demonstrate the
main effects of faceting for the simplest possible situa-
tion. Another assumption is that the number of singular
GB orientations, X , is a constant for the given grain.
Strictly speaking this is not the case since in the process
of grain growth the grain under consideration changes
its neighbors and, consequently, the symmetry of cor-
responding GBs also changes. However, there is some
evidence that the GB which is parallel to a low-index
plane in just one of two neighboring grains exhibits lo-
cal cusp in energy and is singular. This fact provides
some justification to the assumption X = const, since
the orientations of the grains do not change in the course
of grain growth for sufficiently large grains.

Let us first consider the situation n < 6. The angular
range of inclinations swept by all n sides of the grain is
2π − nπ/3. Here we assumed that all the GBs meeting
at the triple junctions are the non-singular ones and have
equal energy of γb. The probability that all X singular
orientations will fall inside this interval is X (1 − n/6).
This is also the number of facets for the given grain.
We can now write down the expression for the rate of
grain area change:

dS

dt
= −

∮
KγbMds − 2X

(
1 − n

6

)
γb M0 sin ϕ (4)

where ds is the element of length along the GBs, K
is the GB curvature and M is the mobility of non-
singular GBs. The first and the second term in the
RHS of Equation 4 represent the contributions of the
non-singular GBs and of the facets, respectively, to the
shrinking of the grain. The loop integral in the RHS
of Equation 4 would be 2πγb M for the circular grain
embedded in the single crystalline matrix. For the real
grain the result of loop integration of the curvature will
be reduces by π/3 for every triple junction and by 2ϕ

for every facet. Taking this into account we arrive at the
main result of this section:

dS

dt
= Mγbπ

3
(n − 6)

{
1 − 36X

π

(
ϕ − M0

M
sin ϕ

)}

(5)

The identical result can be obtained also for n > 6.
Equation 5 demonstrates that with the simplifications
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made the role of GB anisotropy in modifying the Von
Neumann-Mullins relationship is reduced merely to the
renormalization of GB mobility:

M ′ → M

{
1 − 36X

π

(
ϕ − M0

M
sin ϕ

)}
(6)

It is instructive to consider first the case of identical mo-
bilities M = M0. Since the inequality ϕ > sin ϕ is valid
for all non-zero values of ϕ we come to the conclu-
sion that in this case the GB anisotropy always reduces
the rate of normal grain growth. Developing sinϕ in
Equation 6 and cosϕ in Equation 1 in Taylor series and
keeping terms up to the third order in ϕ we arrive at the
approximate result for renormalized mobility:

M ′ ≈ M

{
1 − 5.4X

(
1 − γ0

γb

)3/2}
(7)

Equation 7 demonstrates that the effect of GB
anisotropy on slowing down the process of grain growth
is relatively strong: for the two-fold symmetry (X = 2)
and mere 10% anisotropy in GB energy (γ0 = 0.9γb)
the renormalized GB mobility is reduced by approx.
34%. For larger values of GB anisotropy M ′ can be
further reduced or even turned negative, however, at
such large anisotropies the assumptions made during
derivation of Equation 5 are not valid anymore.

The above results are consistent with the results of
phase field simulations of Kazaryan et al. [7], where
the slowing down of the rate of normal grain growth
resulting from the energy anisotropy alone was found.
However, no direct comparison between the results of
two works is possible. In Ref. [7] the GB energy was the
function of both GB misorientation and inclination an-
gles. The slowing down of grain growth in [7] can be as-
sociated with the increase of the fraction of low-angle,
low-energy GBs in the course of growth. In the present
work, the GB energy depends on the GB inclination
only, and the cusps on γ -plot associated with the sin-
gular orientation are assumed to be narrow and sharp.
Therefore, in the present work the effect of only inclina-
tional GB anisotropy on grain growth is emphasized. It
is remarkable that this inclinational energy anisotropy
alone slows down the rate of grain growth.

We have made an assumption M = M0 for illus-
trative purpose only since there is little physical jus-
tification for assuming that the mobility of singular
GB coincides exactly with the mobility of its random,
isotropic counterpart. Indeed, while it is commonly
agreed that the migration of random isotropic GB is re-
alized by uncorrelated jumps of individual atoms across
the GB, the migration mechanism of a singular facet
can be totally different [14]. For example, the hot stage
in-situ transmission electron microscopy (TEM) study
of the migration of �5 singular GB in gold has shown
that its migration occurs by the shuffling of groups of
atoms directly across the GB [15]. The difference in mi-
gration mechanisms causes the difference in mobilities
that can reach one-two orders of magnitude [14]. While
the situation M0 < M will just lead to further decrease
of the rate of normal grain growth (see Equation 5),

the opposite situation M0 > M can result in increased
grain growth rate due to faceting. It should be noted
that Equation 5 describes the time evolution of the area
of the grain and does not tell anything about the grain
shape. It is clear that the presence of highly mobile
facets will result not only in acceleration of the overall
rate of grain growth, but also in anisotropic microstruc-
ture: the grains will be elongated in the direction of fast
facets. Such microstructures are often observed during
the grain growth in ceramics [16, 17].

One of the most important assumptions made during
the derivation of Equation 5 was that the facets are
sufficiently short and do not reach the triple junctions
of the grains. In the next section we will show that with
increasing M0 the length of the facets increases, so that
at some point they inevitably reach the triple junctions.
In this situation the extension of Von Neumann-Mullins
relationship (Equation 5) will loose its validity. In what
follows we will develop an alternative approach based
on mean field approximation of Burke and Turnbull [6].

3. Steady state migration of the faceted GB
Let us consider the steady-state migration of GB half-
loop that exhibits a singular facet for the inclination
which is parallel to the y-axis (Fig. 3). In the steady-
state regime both the non-singular portion of the GB
and the facet move as a whole in the x-direction with a
unique migration rate V and the overall shape of the GB
does not depend on time. Though the GB migration dur-
ing grain growth is never steady state, the geometry of
half-loop is often employed for the experimental stud-
ies of capillary-driven GB migration [14] and, there-
fore, it is instructive to consider how the difference in
mobilities of the non-singular GB and the facet affects
the geometry of the half-loop. The equations governing
the migration of the non-singular GB have been derived
elsewhere [14] and here we will write down the general
solution for the shape of this portion of the half-loop:

y = y0 + Mγb

V
arccos

{
exp

(
− (x − x0)V

Mγb

)}
(8)

where x0 and y0 are the integration constants. These
constants, together with the values of V and facet
length l can be determined from the obvious boundary
conditions:

y(0) = l

2
(9)

Figure 3 Geometry of capillary-driven migration of the faceted GB.
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y(∞) = a

2
(10)

and

y′(0) = 1

tan ϕ
(11)

The last condition can be obtained using the same
weighted mean curvature arguments for migration of
the facet that led to Equations 2 and 3:

V = 2γb M0 sin ϕ

l
(12)

Equations 8–12 define the geometry of the half-loop
completely. After some algebra we obtain:

V = γb M

a

{
2

M0

M
sin ϕ − 2ϕ + π

}
(13)

and

l = a

1 +
π
2 − ϕ

M0

M sin ϕ

(14)

The dependence of the dimensionless facet length, l/a,
on the ratio of mobilities, M0/M , for several differ-
ent values of ϕ is shown in Fig. 4. It is remarkable
that even for a very weak anisotropy (ϕ = 0.15 corre-
sponds, according to Equation 1, to a mere 1.1% dif-
ference in energies) the length of the facet rapidly in-
creases with increasing mobility and reaches 50% of
the half-loop width already for M0/M ≈ 10. Fig. 4 ex-
presses the main message of this section for the anal-
ysis of grain growth in 2-D polycrystals: sufficiently
mobile facets are so long that they will probably ex-
tend up to the closest triple junctions and form the en-
tire grain sides. In this case the analysis of Section 2
looses its validity. The GBs in such situation do not
exhibit any mathematical curvature and conventional
wisdom says that the grain growth should stagnate. In
the next section we will demonstrate that this is not the
case.

Figure 4 The dependence of dimensionless facet length on the reduced
facet mobility for three different values of ϕ.

Figure 5 Geometry of a facet (bold line) joining four non-singular GBs
at two triple junctions.

4. Grain growth in highly anisotropic
polycrystals

Let us consider a singular facet joined by four non-
singular isotropic GBs at two opposite triple junc-
tions (see Fig. 5). It follows from the vector ξ -
thermodynamics of Cahn and Hofman [18, 19] that the
normal force acting on the facet is a sum of two torques
at the triple junctions. This normal force causes the
migration of the facet and the growth/shrinkage of re-
spective grains. We will give below a more detailed
derivation of the fact that the torques at the triple junc-
tion represent a sole driving force for facet migration.
If the non-singular GBs joining the facet are isotropic
the conditions of equilibrium analogous to Equation 1
can be written in the form:

γ0 = γb(sin α + sin β) (15a)

γ0 = γb(sin α′ + sin β ′) (15b)

The torques acting on a facet in the direction of y-axis
are:

T = γb(cos α − cos β) (16a)

T ′ = γb(cos α′ − cos β ′) (16b)

The weighted mean curvature of the facet, WMC5,
which in turn is the driving force for facet migration
can be defined using a small displacement of the facet
along the y-axis:

WMC5 = T + T ′

l
(17)

Both T and T ′ vary from zero to some maximal value
Tmax. Tmax is the maximal torque that can be sustained
by the facet without spontaneous bowing out. During
the grain growth T and T ′ may be of the opposite signs
and partly compensate each other. We will assume that
all facets can be characterized by one value of Tmax and
that the total torque can be written in the form δTmax,
where δ is a numerical coefficient of the order of one.
In the spirit of Burke-Turnbull theory of normal grain
growth we will assume that the averaged grain diameter
scales with the averaged length of the facets, l̄, that fully
or partly bound the grains:

dl̄

dt
= M0

δTmax

l̄
(18)

This equation has an obvious parabolic solution

l̄2 − l̄2
0 = 2M0δTmaxt (19)
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where l̄0 is the averaged grain diameter for t = 0.
Equation 19 is strikingly similar to the classical
parabolic growth law for the system of isotropic GBs,
with the isotropic GB mobility substituted by M0 and
the isotropic GB energy substituted by Tmax. The am-
plitude of Tmax depends both on the depth and width
of the cusp on the γ -plot of respective GB and its am-
plitude may be comparable with γb. The value of M0
may be both lower and higher than the mobility of non-
singular GBs, M . For example, the coherent �3 twin
GBs are known to exhibit very low mobility, whereas
the mobilities of singular facets of the CSL GBs with
the relatively high energy may be much higher than the
mobility of their non-singular counterparts [6]. There-
fore, contrary to the conventional wisdom, the rate of
normal grain growth in the ensemble of fully faceted
GBs can be both lower and higher than the rate of grain
growth in isotropic system.

5. Conclusions
From the results of the present work the following con-
clusions can be drawn:

1. The GB faceting that is caused by the presence
of sharp cusps on GB energy vs. GB orientation plot
slows down the rate of normal grain growth. Under
some simplifying assumptions (i.e., that the GB facets
do not reach triple junctions) the faceting modifies Von
Neumann-Mullins relationship for 2-D grain growth
by mere renormalization of GB mobility. In the ap-
proximation of equal mobilities and of weak energy
anisotropy, the reduction of the “effective” GB mobil-
ity is proportional to the difference of energies of the
non-singular GB and the facet power 3/2.

2. If the mobility of the facet is higher than the mo-
bility of non-singular GBs, the grain growth can be
accelerated and the anisotropic microstructure should
develop.

3. The problem of capillary-driven migration of
faceted GB in the half-loop geometry was solved. It
was shown that the length of the facet increases with
increasing mobility. It was concluded that in the poly-
crystal highly mobile facets should directly connect the
neighbouring triple junctions, thus invalidating the Von
Neumann-Mullins relationship.

4. An analog of Burke-Turnbull analysis of normal
grain growth for the highly anisotropic microstruc-

ture was suggested. The parabolic grain growth law
followed, with the maximal torque and the facet mo-
bility substituting the GB energy and the GB mo-
bility, respectively, in the parabolic growth law for
isotropic system. Depending on the ratio between the
torque and the facet mobility the faceting can both
slow down and accelerate the process of normal grain
growth.
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